Iterative methods for solving monotone equilibrium problems via dual gap functions
نویسندگان
چکیده
This paper proposes an iterative method for solving strongly monotone equilibrium problems by using gap functions combined with double projection-type mappings. Global convergence of the proposed algorithm is proved and its complexity is estimated. This algorithm is then coupled with the proximal point method to generate a new algorithm for solving monotone equilibrium problems. A class of linear equilibrium problems is investigated and numerical examples are implemented to verify our algorithms. © 2010 Springer Science+Business Media, LLC. Author
منابع مشابه
A New Method for Solving Monotone Generalized Variational Inequalities
We suggest new dual algorithms and iterative methods for solving monotone generalized variational inequalities. Instead of working on the primal space, this method performs a dual step on the dual space by using the dual gap function. Under the suitable conditions, we prove the convergence of the proposed algorithms and estimate their complexity to reach an ε-solution. Some preliminary computat...
متن کاملCommon Zero Points of Two Finite Families of Maximal Monotone Operators via Proximal Point Algorithms
In this work, it is presented iterative schemes for achieving to common points of the solutions set of the system of generalized mixed equilibrium problems, solutions set of the variational inequality for an inverse-strongly monotone operator, common fixed points set of two infinite sequences of relatively nonexpansive mappings and common zero points set of two finite sequences of maximal monot...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملA New Iterative Scheme for Solving the Equilibrium Problems, Variational Inequality Problems, and Fixed Point Problems in Hilbert Spaces
We introduce the new iterative methods for finding a common solution set of monotone, Lipschitztype continuous equilibrium problems and the set of fixed point of nonexpansive mappings which is a unique solution of some variational inequality. We prove the strong convergence theorems of such iterative scheme in a real Hilbert space. The main result extends various results existing in the current...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 51 شماره
صفحات -
تاریخ انتشار 2012